16 research outputs found

    Interference Queueing Networks on Grids

    Full text link
    Consider a countably infinite collection of interacting queues, with a queue located at each point of the dd-dimensional integer grid, having independent Poisson arrivals, but dependent service rates. The service discipline is of the processor sharing type,with the service rate in each queue slowed down, when the neighboring queues have a larger workload. The interactions are translation invariant in space and is neither of the Jackson Networks type, nor of the mean-field type. Coupling and percolation techniques are first used to show that this dynamics has well defined trajectories. Coupling from the past techniques are then proposed to build its minimal stationary regime. The rate conservation principle of Palm calculus is then used to identify the stability condition of this system, where the notion of stability is appropriately defined for an infinite dimensional process. We show that the identified condition is also necessary in certain special cases and conjecture it to be true in all cases. Remarkably, the rate conservation principle also provides a closed form expression for the mean queue size. When the stability condition holds, this minimal solution is the unique translation invariant stationary regime. In addition, there exists a range of small initial conditions for which the dynamics is attracted to the minimal regime. Nevertheless, there exists another range of larger though finite initial conditions for which the dynamics diverges, even though stability criterion holds.Comment: Minor Spell Change

    Multi-Agent Low-Dimensional Linear Bandits

    Full text link
    We study a multi-agent stochastic linear bandit with side information, parameterized by an unknown vector θ∗∈Rd\theta^* \in \mathbb{R}^d. The side information consists of a finite collection of low-dimensional subspaces, one of which contains θ∗\theta^*. In our setting, agents can collaborate to reduce regret by sending recommendations across a communication graph connecting them. We present a novel decentralized algorithm, where agents communicate subspace indices with each other, and each agent plays a projected variant of LinUCB on the corresponding (low-dimensional) subspace. Through a combination of collaborative best subspace identification, and per-agent learning of an unknown vector in the corresponding low-dimensional subspace, we show that the per-agent regret is much smaller than the case when agents do not communicate. By collaborating to identify the subspace containing θ∗\theta^*, we show that each agent effectively solves an easier instance of the linear bandit (compared to the case of no collaboration), thus leading to the reduced per-agent regret. We finally complement these results through simulations

    Model Selection for Generic Contextual Bandits

    Full text link
    We consider the problem of model selection for the general stochastic contextual bandits under the realizability assumption. We propose a successive refinement based algorithm called Adaptive Contextual Bandit ({\ttfamily ACB}), that works in phases and successively eliminates model classes that are too simple to fit the given instance. We prove that this algorithm is adaptive, i.e., the regret rate order-wise matches that of {\ttfamily FALCON}, the state-of-art contextual bandit algorithm of Levi et. al '20, that needs knowledge of the true model class. The price of not knowing the correct model class is only an additive term contributing to the second order term in the regret bound. This cost possess the intuitive property that it becomes smaller as the model class becomes easier to identify, and vice-versa. We then show that a much simpler explore-then-commit (ETC) style algorithm also obtains a regret rate of matching that of {\ttfamily FALCON}, despite not knowing the true model class. However, the cost of model selection is higher in ETC as opposed to in {\ttfamily ACB}, as expected. Furthermore, {\ttfamily ACB} applied to the linear bandit setting with unknown sparsity, order-wise recovers the model selection guarantees previously established by algorithms tailored to the linear setting.Comment: 40 pages, 5 figures. arXiv admin note: text overlap with arXiv:2006.0261
    corecore